
Beyond Exploit Scanning: A Functional Change-Driven Approach to Remote
Software Version Identification

Jinsong Chen†*, Mengying Wu†*, Geng Hong†*, Baichao An†, Mingxuan Liu‡, Lei Zhang†, Baojun Liu§,
Haixin Duan§,¶ and Min Yang†

†Fudan University, {jschen23, wumy21}@m.fudan.edu.cn, {ghong, bcan20, zxl, m_yang}@fudan.edu.cn
‡Zhongguancun Laboratory, liumx@mail.zgclab.edu.cn
§Tsinghua University, {lbj, duanhx}@tsinghua.edu.cn

¶Quancheng Laboratory

Abstract
Traditional attacks on remote software often fail to be armed
with targeted software version information, leading to conspic-
uous brute-force attacks. Existing version identification tools,
relying on predefined strings or patterns as fingerprints, can
often not sketch software versions with defensive measures
such as obfuscation or authentication.

This paper presents a covert and accurate version identifica-
tion method based on noticeably different functional changes
introduced by version updates. Our tool minimizes server no-
ticeable probing behaviors by distilling domain knowledge
from documents and change logs, and carefully designing dy-
namic probing sequences. We implemented and evaluated our
prototype framework on Elasticsearch, Redis, Dubbo, Joomla,
and phpMyAdmin, focusing on their versions from the past
decade. Our tool achieved 2.8 times identification rates higher
than previous works, with 65.37% fewer packages sent. Ad-
ditionally, we conducted a large-scale scan of real-time data
from Shodan and FOFA collected over two months, success-
fully identifying version information for 240,020 remote soft-
ware instances, with 156,256 unrecognized by either platform.
Our result reveals that over 72.25% users are still deploy-
ing versions released at least one year ago, facing significant
vulnerability threats.

1 Introduction

Traditional attacks on remote software often rely on brute-
force attempts, cycling through all available exploits to iden-
tify one that works [1]. However, this wastes significant re-
sources due to the specificity of exploits to particular software
versions [2] and risks alerting victims through repeated and
conspicuous access attempts. Acquiring precise version infor-
mation, therefore, becomes a critical multiplier for increasing
the efficiency and stealth of such attacks. By narrowing the fo-
cus to vulnerabilities relevant to the target’s software version,
attackers can significantly enhance their chances of success

*These authors contributed equally to this work.

logstash_system user login V5.2.0

logstash_system user login V5.1.2

$ curl -u logstash_system:password ...

error:
 root_cause:
 - type: "security_exception"
 reason: "failed to authenticate user [logstash_system]"
...
status: 401

$ curl -u logstash_system:password ...

error:
 root_cause:
 - type: "security_exception"
 reason: "unable to authenticate user [logstash_system]…"
...
status: 401

Figure 1: A motivation example on Elasticsearch [3]. When
logging in with the same username “logstash_system”, ver-
sions v5.1.2 and v5.2.0 show different responses.

while reducing their likelihood of detection. Meanwhile, for
security researchers, version information can also help them
assess vulnerabilities and promptly alert developers.

Previous works have proposed several version identifica-
tion methods based on predefined strings or patterns as finger-
prints, such as keywords [4, 5], hash values of asset files [6, 7],
and structures of HTML files [8]. However, Kondracki and
Nikiforakis [9] found that they highly depend on the assump-
tion that administrators do not modify or remove the content
provided by “out-of-the-box” applications. Therefore, defen-
sive measures, such as obfuscating version information in
responses or enabling authentication, will significantly reduce
their effectiveness.

To address the problem, we introduce a novel version iden-
tification method based on the noticeably different functional
changes of softwares. Unlike previous modifiable features,
functional changes can hardly be modified, as they are the
main causes that a software turns into a new version, while

they will also lead to different responses than before. Figure 1
shows the response differences when logging into two Elastic-
search versions as the user “logstash_system”. Starting from
version 5.2.0, Elasticsearch introduced a new built-in user,
“logstash_system”. As a result, v5.1.2 treats the user as nonex-
istent, returning “unable to authenticate user {login_user}...”,
while v5.2.0 recognizes the user but fails to authenticate, re-
turning “failed to authenticate user {login_user}”. This case
demonstrates that functional differences between versions
can be leveraged to design probes that trigger distinguishable
response variations.

There are two main challenges when developing a version
identification tool based on software functional changes while
minimizing server noticeable probing behaviors. First, effec-
tively understanding and applying functional change requires
specialized domain knowledge, which complicates the gen-
eration of probes to trigger these functionalities. Second, as
users do not strictly use the “out-of-the-box” version, their
responses may deviate from expectations. This poses a chal-
lenge in arranging backup probes that maintain accurate iden-
tification while minimizing their usage to remain covert.

For the first challenge, we supplemented release notes with
contextual data from pull requests and user guides to acquire
precise and adequate domain knowledge essential for effective
probe design. For the second challenge, we proposed a probe
planning solution using dynamic decision trees to address
unexpected responses from customized content. Meanwhile,
to resolve version conflicts caused by response spoofing, we
use majority voting to determine the most likely version.
Laboratory experiments. We evaluated the method’s effec-
tiveness by implementing it on five widely used softwares
with numerous vulnerabilities: Elasticsearch [3], Dubbo [10],
Redis [11], Joomla [12], and phpMyAdmin [13], focusing on
their versions from the past decade. The functional probes
we generated can effectively distinguish versions where ver-
sion strings are missing or security configurations are en-
abled, such as authentication and restricted external access.
For example, among 191 Elasticsearch versions with default
authentication enabled, 8 probes allow us to determine which
of the 16 minor version ranges a server belongs to. Our tool
significantly improves version identification accuracy across
five software components compared to existing methods, with
an improvement of up to 284%, while using 65.37% fewer
probes. Moreover, only our tool can infer versions of Dubbo,
as it does not expose any predefined string or pattern that
reveals version information.
Real-world version scanning. We further conducted a large-
scale measurement of five software systems in the real world.
Specifically, using records from Shodan [14] and FOFA [15],
we scanned 277,251 online servers for this software over
two months. Our scanning tool identified version information
for 240,020 servers, with 95.61% of the results achieving
minor and patch-level identification. We obtained version
information for 156,256 servers unrecognized by traditional

device search engines. Our result reveals that over 72.25%
users are still deploying versions released at least one year ago,
and 24.98% Joomla users continue using decade-old versions.
We also highlight the severe security risks posed by outdated
versions and the absence of enabled security features.
Contributions. This paper makes the following contributions:
•We proposed a new version identification method based on
noticeable functional changes introduced by version updates,
which can minimize server noticeable probing behavior while
guaranteeing accuracy and efficiency.
•We implemented our prototype framework, named Version-
Seek, on Elasticsearch, Redis, Dubbo, Joomla, and phpMyAd-
min. It achieved 2.8 times identification rates higher than
previous works, with 65.37% fewer packages sent, especially
when security features such as authorization are enabled.
•We conducted a large-scale, real-world scan on the five soft-
ware and identified version information for 86.57% services,
with 95.61% in minor and patch versions. Our result reveals
that over 72.25% users are still deploying versions released
at least one year ago, facing significant vulnerability threats.
•We open-sourced VersionSeek to help security researchers
identify software versions and assess vulnerabilities.

2 Preliminary Study

2.1 Version Identification

Remote software version identification is typically performed
through active scanning techniques by sending requests to
targets and analyzing their responses. The two main tech-
niques are banner grabbing via plain-text protocols, and
multi-probe tools rely on multiple manually crafted requests.
Banner grabbing connects to a service and retrieves ver-
sion information from the welcome banner or specific hand-
shake requests, such as "SSH-2.0-OpenSSH_7.6p1 Ubuntu-
4ubuntu0.7." The multi-probe method manually collects basic
interaction probes for various services to gather information,
such as Nmap [16].

However, these methods highly rely on the assumption that
administrators do not modify or remove the content provided
by “out-of-the-box” applications [9]. They require the soft-
ware to include at least one predefined string or pattern in its
response that can be used to infer version information.

To understand whether current software provides such
strings, we selected seven popular and representative open-
source remote software systems, including a widely used con-
tent management system [17], web and terminal databases [3,
11], RPC frameworks [10] and web interface for SQL [13]
with numerous vulnerabilities [18, 19, 20, 21]. Then we col-
lect four software scanning tools: Nmap [16], Metasploit [22],
BlindElephant [6] and WhatWeb [23]. By auditing their ver-
sion identification code, we summarized the common types
of predefined strings or patterns, as shown in Table 1.

Software Predefined String or Pattern Feature Addition Feature Adjustment Feature Removal Bug Fix Optimization and Upgrade

New Features Changes Regressions Deprecations Bug Fixes Performance Dependency Code

Elasticsearch V
√ √ √ √ √

× × -
Dubbo -

√
- -

√ √
× × ×

Redis V
√ √

- -
√

× - -
Joomla V,M,H,F

√
- - -

√
× - -

Wordpress V,M,H,F
√ √

-
√ √

× - -
Drupal M,H,F

√
- - -

√
× × -

phpMyAdmin V,H,F
√ √

-
√ √

× × -

Table 1: Overview of a preliminary study on 7 open-source remote software about whether they support predefined string or
pattern that reveals version information in the response and whether the response shows differently for each change type in
release notes. In predefined strings or patterns, V represents version number, M represents magic pattern like URL recognition
and HTML tags, H represents hash value, and F represents filenames. - means no such change found in release notes,

√
means

this change can result in different responses, and × means this change commonly does not result in different responses.

The result shows that not all software supports at least one
type of predefined string that can be used to identify version
information, such as Dubbo. Also, for web software, there
are some banner obfuscation tools, such as ServerMask [24],
which can be used to modify response headers or default
banners to hide version information. Both situations can cause
existing version identification tools to degrade in performance
or fail to recognize the versions.

2.2 Functional Changes

Unlike previous modifiable features, functional changes can
hardly be modified, as they are the main causes that a software
turns into a new version, while they will also lead to different
responses than before. As shown in Figure 1, when logging in
with a specific username to two different versions of Elastic-
search, although both had authorization enabled and returned
error messages, we could still distinguish between them based
on their different responses. The reason for this difference
lies in their implementation: version 5.2.1 introduced a new
built-in user, “logstash_system”.

Inspired by this example, we found that leveraging func-
tional changes may solve the problems discussed in Sec-
tion 2.1. Firstly, this method does not rely on predefined string
or pattern in the response. Secondly, the differences caused
by functional changes are not easily obscured or modified.

To examine functional changes across version updates and
identify those causing response variations, we analyzed up
to five versions per software, usually the first version of a
new minor release. We reviewed release notes to categorize
change types, selected two changes per type, and designed
corresponding probes using domain knowledge from search
engines and guidance documents. These probes were tested
locally to verify if they triggered different responses.

Developers typically organize release notes according to
the type of changes to make it easier for users to understand
and apply. As shown in Table 1, following their conventions,
we modeled the changes into the five categories:

• Feature Addition, refers to new functions or usages.

• Feature Adjustment, refers to adjusting existing func-
tionalities in terms of support or usage.

• Feature Removal, refers to removing or deprecating
outdated or unsafe features and feature rollbacks due to
upgrades, such as deprecations and regressions.

• Bug Fix, refers to patching disclosed vulnerabilities or
known issues.

• Optimization and Upgrade, includes code structure
optimization, software dependency upgrades, and perfor-
mance improvements.

The first three types of changes are mostly related to the
core functions of the software. By adding, adjusting, or remov-
ing features, these changes better align with user needs, thus
such modifications often result in observable differences in re-
sponses. Notably, although Bug Fix can also lead to response
differences, using requests that trigger bugs violates ethical
principles. Additionally, Optimization and Upgrade changes
are primarily developer-oriented and rarely manifest in ways
perceivable through user-accessible responses. Overall, we
primarily select Feature Addition, Feature Adjustment, and
Feature Removal as functional changes to construct probes.

2.3 Threat model
Our threat model assumes that an attacker can connect to and
send probes to a host running known software. The host owner
may take defensive measures such as obfuscating version,
denying access to files containing leaked information, or using
authorization or protection modes. The attacker aims to infer
the software version running on the server.

Depending on the server’s state, the attacker may infer
the version at three levels: major, minor, and patch. Versions
are typically represented in the format x.y.z, where x denotes
the major version, which changes with incompatible API up-
dates, y represents the minor version, which reflects backward-
compatible feature additions, and z indicates the patch version,
which accounts for backward-compatible bug fixes [25].

In closed-source and proprietary software, version updates
are also accompanied by changes in functionality. The re-

sulting variations in responses can thus be used to distin-
guish between different versions. However, the development
information provided by such software is often limited or
unavailable, making it difficult to automatically analyze their
programs and extract functional changes. In contrast, given
the public availability of version update information for open-
source software and the accessibility of their source code, this
paper uses open-source software as case examples for study.

3 Methodology

Based on the preliminary study, we design a novel version
identification framework named VersionSeek, which consists
of three modules: a functional probe generation module that
extracts functional features from release notes and automati-
cally generates probes that trigger these features, a response
processing module that standardizes responses from different
versions and classifies responses, and a version identification
module that optimizes probe usage to maximize identifica-
tion accuracy with minimal probes. Figure 2 illustrates the
VersionSeek framework.

3.1 Functional Probe Generation

The functional changes introduced during the software update
process are diverse, requiring specialized domain knowledge
to fully understand and effectively apply. To generate probes
to trigger these functional features accurately, we found that
open-source software development often reflects community
update needs, as reflected in pull requests (PRs). Also, user
guides offer insights into how features are intended to be used.
Combining this information, we can accurately locate the
trigger probe of updated functions, as shown in Figure 3.
Functional Features and Context Collection. Each new ver-
sion of a software typically includes Release Notes designed
to assist developers in quickly understanding the features and
functionalities of the update. These notes briefly outline the
changes in the new version, typically presented as web pages
and organized by the change types. As studied in Section 2.2,
we leverage Feature Addition, Feature Adjustment, and Fea-
ture Removal as functional changes to construct probes. We
used web crawlers to retrieve the original pages and parsed
the HTML documents to extract the functional features.

While we can collect the target changes from release notes,
feature descriptions in these notes are typically vague and
lack sufficient context, making it difficult to construct specific
probes. To address this, we collected additional contextual
information from pull requests and the user’s guide.

Pull requests (PRs) enable collaborative reviews of pro-
posed changes, facilitating issue identification and improve-
ment suggestions. Feature changes in open-source softwares
are often documented in PR submissions, with descriptions

linking to corresponding PR or issue numbers. By cross-
referencing links or IDs in feature descriptions with records
on the hosting platform and utilizing platform APIs, such as
the GitHub API [26], we can obtain more detailed informa-
tion about each feature, including functionality descriptions,
code changes, and related discussions.

The user’s guide typically provides detailed instructions
and illustrative examples for each functionality. However,
given the wide range of functionalities covered in the User’s
Guide, we need to locate the contextual information for
each functional feature accurately. Here, by designing well-
structured prompts, we guide the LLM in utilizing chain-of-
thought(CoT) reasoning to retrieve the relevant documenta-
tion, as illustrated in Figure 3a. Specifically, by evaluating the
similarity between document titles and functional features and
using keyword frequencies as a double-check criterion, the
most relevant documents from User’s Guide will be retrieved.
Probe Generation. With the context of features, we can then
manually construct specific functional probes. To automate
this process, we adapted the Retrieval-Augmented Generation
(RAG) method. As shown in Figure 3b, for each functional
feature in the release note, we use the description in PR and
the related user guide as additional information. At the same
time, interaction examples are provided to standardize the
format of the output. Finally, using the above contents as aug-
mented information, LLM can automatically generate probes
that trigger functional features.
Ethical Consideration. Considering that some probes may
have side effects on target servers (e.g., configuration changes
or brute-force attempts), we adopted measures such as Mini-
mizing System Impact and Avoiding Brute-force-like Behav-
ior to adhere to ethical guidelines. Details are provided in the
Ethics Considerations section.

3.2 Response Processing

Our goal is efficient and covert version identification by se-
lecting probes with optimal classification effectiveness, for
which we designed a response processing module. By collect-
ing responses from probes triggered across different versions
and standardizing and classifying these responses, we can de-
termine the version classifications for each functional probe.
Response Collection. To obtain response variations, we pro-
pose an automated deployment solution to streamline the
deployment of diverse versions of software. Starting from
the official source code, we observed minimal deployment
differences between adjacent versions, enabling rapid deploy-
ment of multiple adjacent versions by modifying the version
number. For distinct major versions (e.g., Elasticsearch 6.x
and 7.x), we selected representative samples from each major
version to complete deployment and apply them to adjacent
versions. Additionally, we adopted a containerized deploy-
ment to avoid port conflicts and dependency variations, pack-
aging each software and its dependencies for cross-platform

User's Guide about wildcard
Wildcard operator is a placeholder

that matches one or more

characters……

Example: GET /_search

{"query": {"wildcard": {…}}}

Pull Request #58062

Conversation: This PR adds

support for wildcard data type……

Files changed:

+ "wildcard" : {"type" : "wildcard"}

Release Note VA

New Features:

1. Add Wildcard field type #58062

Probe triggering wildcard

GET /_search { "query":

{ "wildcard": {

"database": { "value":

"*keyword*" } } } }

Functional Features Collection

Context Collection

Probe Generation

Response Processing

Responses Standardization

Response Classification

Functional

Probes

Response(V<VA)
error:
root_cause: "No
handler for type
[wildcard]…"
index_uuid: *****

Raw
took: 24
_shards:
 total: 10
 successful: 8
Index: DF1ZKJ

Response(V>VA)
took: *
_shards:
 total: *
 successful: *
index: ******

Standardized
took: *
_shards:
 total: *
 successful: *
Index: ******

Raw
took: 124
_shards:
 total: 78
 successful: 59
Index: ZJUPLG

Service Deployment of Different Versions

Responses Collection

Probe->Versions
Probe 1:
- Resp1:{VA,VB,…}
- Resp2:{VC,VD,…}
- Resp3:{VE,VF,…}
…
Probe m

Probe Sequence
Probe 4

…
Probe 1
Probe 3
Probe 2

…

Probes
Scheduling

Minimal Probe Sequence Planning

Conflict Resolution

Versions

{VA,VB,VC,VD,VE,VF}

Probe1

Versions

{VA,VB}

Versions

{VC,VD}

Versions

{VE,VF}

Probe Selection

Resp1 Resp2 Resp3

Decision Tree Generation

Validated

Probes

Functional Probe Generation Version Identification

Figure 2: Overview of the VersionSeek framework.

A new feature introduced in Elasticsearchv7.9.1 with the
description "Add wildcard field type…" and additional
description in pull request is "This PR adds support for
wildcard data type…". Based on the information above and the
following chain of thought, return the most relevant
documents' paths:
Step1: Traverse through all user's guide documents…
Step2: Determine relevance of the titles to the feature…
Step3: Assess relevance based on keyword frequency…
Step4: Return paths of the top 5 relevant documents…

Top 5 most relevant document paths about feature description
"Add Wildcard …" :
1. …/Query DSL/Term-level queries/query-dsl-wildcard-
query.html
2. …/Mapping/Field data types/keyword.html
…

A new feature introduced in Elasticsearchv7.9.1 with the
description " Add wildcard field type…" and additional
description in pull request is "This PR adds support for
wildcard data type…". The document path related to this
feature is "…/Query DSL/Term-level queries/query-dsl-
wildcard-query.html", the path for probe samples is:
"…/es_probe_samples.pdf"
Use the above information as a retrieval source to answer
how to trigger this feature. Only provide the specific
complete command or request, without additional explanations.

curl -X GET "localhost:9200/_search"
-H 'Content-Type: application/json' -d'
{"query":
 {"wildcard": {"database": {"value": "*keyword*"}}}
}'

User User

LLM LLM

(a) Text Retrieval (b) Probe Generation

Figure 3: Overview of Functional Probe Generation.

flexibility. We then sent the saved probes to different versions
of the software and recorded their responses.

Responses Standardization. Functional differences between
versions result in distinct responses, however, various external
noise factors can also lead to response variability even within
the same version. For example, identical services operating
in different network environments may produce different re-
sponses due to latency or bandwidth constraints. Furthermore,
variations in operating systems or hardware configurations
may further contribute to response discrepancies.

To reduce the influence of noise on response analysis, we
focused on isolating information directly related to version-
specific functionality. The response noise may vary across
different types of software. To collect noise patterns for each
software, we designed a differential testing method with three

environmental factors: access times, varying data or content
within the software, and test machines with different IP ad-
dresses. In each scenario, the same probe was applied to each
software version five times, and responses were compared
at the word level to identify discrepancies. This approach
allowed us to derive noise-matching patterns specific to each
software. We then matched the patterns and substituted them
to standardize these noises within the responses.

Response Classification. For effective covert version identi-
fication, selecting probes with optimal classification perfor-
mance is essential. To achieve this, we automatically group
versions that produce identical responses, forming version
classifications for each probe. This process provides valid
probes and establishes a classification function to record
the versions corresponding to different response types for

each probe. The classification function can be formulated
as f (pi,r j) = {va,vb,vc, ..}, given a valid probe pi and its re-
sponse r j, it outputs a corresponding version set {va,vb,vc, ..}.

3.3 Version Identification

Since our goal is to identify the version of software, a single
probe is insufficient for accurate identification. Therefore, we
need to combine multiple probes to achieve maximum recog-
nition effectiveness. To achieve covert and efficient version
identification, we designed a dynamic decision tree algorithm
to schedule the probes effectively. Figure 4 illustrates our
dynamic decision tree method.
Problem Definition. We formulate the probe scheduling as
the solution to the following problem:

• Input: A version set V to be distinguished, a set of avail-
able probes P, and the classification function f (pi,r j).

• Output: A minimal probe sequence sol that maximally
distinguishes V .

In the initial stage, V denotes the set of all versions of soft-
ware, and P denotes all functional probes. However, in the
real world, user-customized settings or content may cause
some probes generated from local experiments to become
ineffective, such as p1 in Figure 4, requiring a re-scheduling
based on the current state. Specifically, we record the remain-
ing versions to be distinguished Vr and the unused probes Pr,
re-plan a feasible solution for distinguishing Vr (Algorithm 2
in the appendix) and construct a identification decision tree
(Algorithm 3 in the appendix) to guide the probe scheduling.
As illustrated in Algorithm 1, this process is repeated until Vr
cannot be further distinguished, which can be formulated as:

∀pi ∈ Punused, Ri is the response set of pi, and ̸ ∃r j ∈ Ri

such thatVi j = f (pi,r j),where Vi j ̸= /0, Vi j ̸=Vr, and Vi j ⊆Vr.

Minimal Probe Sequence Planning. To minimize the num-
ber of probes used while maximizing version identification,
we employ a recursive reduction approach to find a locally
optimal solution efficiently.

Firstly, we determine the minimal probe sequence required
to uniquely identify each version. For a specific version va,
we select the probe that can distinguish it from as many other
versions as possible. This process is repeated until no further
distinction is made. The selected probes are then stored in
order, forming the minimal probe sequence corresponding to
va. By performing the above operation for each version in V ,
we obtain a minimal probe sequence specific to each version,
such as va : [p1, p2, . . .],vb : [p1, p2, . . .].

Secondly, we obtain an initial solution after merging the
probe sequences for all versions. However, this solution may
contain redundant probes, meaning that combining remaining
probes can achieve the same distinction between versions. To
address this, we recursively check for redundant probes and
remove them until the removal of any single probe results

Algorithm 1: Probe Scheduling
Data: Version set V , available probes P, host H
Result: Version identification result Vr

1 Function VersionIdentification(V,P,H):
2 Vr←V ;
3 Pr← P;
4 while Vr can be further distinguished using Pr do
5 sol←Minimal sequence from Pr to

distinguish Vr (Algorithm 2 in the appendix);
6 tree← Decision tree for sol (Algorithm 3 in

the appendix);
7 foreach pcur ∈ tree do
8 Pr.remove(pcur);
9 rcur← response from H using pcur;

10 Vcur← f (pcur,rcur);
11 if Vcur = /0 then
12 break;
13 end
14 Vr←Vcur ∩Vr;
15 end
16 end
17 return Vr;

in the inability to distinguish the version set maximally. The
final probe sequence then becomes the optimal solution. Al-
gorithm 2 in the appendix demonstrates the complete process.
Decision Tree Generation. Based on the minimal probe se-
quence, we constructed a decision tree, which stores the rela-
tionship between probe responses and versions, to guide the
probe scheduling, as shown in Algorithm 3 in the appendix.

Initially, the root node is the set of versions V to be dis-
tinguished. The first probe in the minimal probe sequence,
pi, is then selected to create child nodes. Each branch repre-
sents a response type r j, and the remaining versions, Vi j =
f (pi,r j)∩V , are treated as corresponding child nodes.

For each new child node Vi j, if no new probe can distinguish
Vi j, it is designated as a leaf node. Otherwise, a new probe
in the minimal probe sequence is selected, ensuring that this
probe has not been used in the path from the root to the current
node and that it can further distinguish Vi j. The same process
for pi is recursively applied to create new nodes, continuing
until all branches terminate at leaf nodes, indicating that the
remaining versions cannot be further distinguished.
Conflict Resolution. User-customized modifications can in-
troduce version conflicts. For example, enabling a feature
disabled by default in a newer version might cause the server
to behave like an older version. To improve version identifi-
cation accuracy, we apply majority voting algorithm, based
on the observation that while user modifications might al-
ter some features, most will still reflect the current version’s
characteristics. Figure 5 shows the conflict resolution.

When a version conflict arises, we backtrack the decision

Versions

{v1,v2,…,vk}

p4

Versions

{v1,v2,v3,v4}

Versions

{v5,…,vk}

R4 match

p1

Host H
Versions

{v1,v2,v3,v4}

p2

Versions

{v1, v2}

Versions

{v3,v4}

R2 match

R1 failed match

Probes = {p1,p2,…,pm}
Versions={v1,v2,v3,v4}

Probeused={p4, p1}

Current State

VH = v2

p3

R3 match

Versions

{v2}

Versions

{v1}

Probes = {p1,p2,…,pm}
Versions = {v1,v2,…,vk}

Probeused={}

Initial State

① Minimal Probe Sequence

p4

p1

p5

p6
p1 failed

Initial Decision Tree

p2

p3

p5

p7

② Minimal Probe Sequence New Decision Tree

Probe Planning
Algorithm

③ Version Result

Decision Tree
Generation
Algorithm

Probe Planning
Algorithm

Decision Tree
Generation
Algorithm

Figure 4: Overview of dynamic decision tree method for version identification. Algorithm 2 in the appendix focuses on minimal
probe sequence planning, while Algorithm 3 in the appendix handles decision tree generation.

Host H

pA VH<5.1.0

Version Conflict

pA

pC

pD

pB

pE

pF

pG

Votes = 3 Votes = 4

VA VB

Majority Vote: VB

Replan

pC

pB

VH>4.3.0

VH>5.1.0

RA

RC

RB

Probe Sequence Version Result

Figure 5: Overview of Conflict Resolution. Within the same
probe sequence, pA and pB produced two conflicting version
identification results. By selecting results supported by the
majority of probes, we obtained high-confidence version iden-
tification results.

tree, compare the current probe’s responses with others to
identify inconsistencies, and record the relationship.

We use each conflicting probe as a root node to generate
new decision trees, ensuring no conflicting probes are in the
same tree. These trees are then sequentially used to iden-
tify the server until the probe limit is reached or no further
distinctions are possible.

To balance overhead and accuracy, conflict resolution is
limited to generating at most three new decision trees per scan.
The probe usage limit for new trees is dynamically adjusted,
and their cumulative usage does exceed that of the original
decision tree, ensuring overall probe usage stays within ac-
ceptable limits. Subsequently, we compare the results of the
new trees pairwise to identify non-empty intersections and
merge them if applicable. For example, if pB and pC conflict
with pA but do not conflict with each other and have overlap-
ping versions, we take the intersection as their result. Finally,

we compare the path lengths of merged results and select the
version with the longest path, as most probes agree with it.

4 Evaluation

To demonstrate the effectiveness and generality of our ap-
proach, five different types of software were selected, in which
existing identification methods can be easily evaded, from the
preliminary study: Elasticsearch [3], Redis [11], Dubbo [10],
Joomla [12], and phpMyAdmin [13]. We implemented our
prototype framework, named VersionSeek, based on their re-
lease versions over the past decade (2014-2024). Detailed
implementation can be found in Appendix B. To evaluate the
effectiveness of VersionSeek, we conducted the evaluation
experiment driven by the following four research questions.
• RQ1: (RAG Ablation Study) What is the contribution of
contextual information in the probe generation module to the
experimental results?
• RQ2: (Probe Effectiveness) How effective are the probes
generated by VersionSeek?
• RQ3: (Scanning Efficiency) What is the probe planning
algorithm’s contribution to VersionSeek ’s runtime efficiency?
•RQ4: (Version Identification Performance) How effective
is VersionSeek in identifying software versions compared to
state-of-the-art tools?
• RQ5: (Robustness) How robust is VersionSeek’s when ad-
ministrators deliberately conceal version information through
techniques such as obfuscation or hiding?

4.1 Dataset
For RQ1, we manually analyzed a small-scale dataset derived
from Elasticsearch. Specifically, we selected the initial and

Software Version
of

Release-Notes
of

Pull Requests
of

Documents Retrieved
of

Probes Generated
of

Ineffective Probes
of

Valid Probes

ElasticSearch [3] 5.0.0-8.15.3 224 2,377 2,067 1,402 850 552
Redis [11] 3.2.0-7.4.1 107 671 438 341 207 134
Dubbo [10] 2.5.4-3.2.15 91 976 630 355 73 282
Joomla [12] 3.0.0-5.2.1 98 1,915 1,771 754 640 114

phpMyAdmin [13] 4.1.4-5.2.1 164 2,024 1,751 829 653 176

Total - 684 7,963 6,657 3,681 2,423 1,258

Table 2: Summary of Document Collection and Probe Generation for four software.

final versions from each major version series (e.g., 5.0.0 and
5.6.0 from the 5.x series) over the past decade. For each
version, we chose up to 8 functional features. Using search
engines and the Elasticsearch documentation, we manually
constructed probes to trigger the corresponding functional
feature changes. Finally, we obtained 30 functional features
and their corresponding trigger probes. The dataset for RQ2
is derived from probes generated in our local experiments and
the responses they triggered across different versions.

For RQ3 and RQ4, a dataset of many active servers anno-
tated with known software type and version is required. To
our knowledge, no available and reliable dataset currently
exists*. We used Shodan to build a dataset annotated with
software types, leveraging its continuous scanning of the in-
ternet, which provides real-time updates on the types and
versions of services running on open ports. Specifically, we
used Shodan’s “product” filter to select records of specific
software types and applied “before” and “after” filters to re-
strict the data collection to the most recent day. Then we used
the Netcat [28] to scan open ports and filter out inaccessible
or offline servers. Finally, we selected the latest records col-
lected within a single day, and randomly chose 100 active
servers of each software as the dataset.

The RQ5 dataset is derived from our locally deployed
servers used to collect response variations, with two version-
concealing methods applied, as detailed in Section 4.6.

4.2 RAG Ablation Study
Experimental Setup. To evaluate the impact of contextual
information on probe generation, we guided the LLM to gen-
erate probes under two conditions: with context information
(RAG) and without (Pure). To ensure a comprehensive assess-
ment, we selected 4 popular LLMs based on the LLM Leader-
board [29]: GPT-3.5, Gemini1.5, Qwen2.5, and Llama3.2.
Study Results. Figure 6 shows the probe generation rate,
i.e., the number of correctly generated probes divided by the
total number of functional features, under the two conditions.
The improvement for all four LLMs with RAG, indicates that
context and domain knowledge help LLMs understand the
content of functional features and generate probes more ac-

*Although Joomla officially provides a showcase page [27], many servers
were either offline or had migrated to non-Joomla services.

GPT-3.5 Gemini1.5 Llama-3.2 Qwen2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

e
G

en
er

at
io

n
R

at
e

0.45

0.23

0.13

0.57
0.63

0.40

0.24

0.67
w/o RAG w/ RAG

Figure 6: The probe generation rates of different LLMs under
Pure and RAG conditions.

curately. Among them, GPT-3.5 showed the most significant
improvement, raising its rate from 0.45 to 0.63. Qwen2.5
achieved the highest overall performance, reaching 0.67, and
was selected for subsequent experiments.

4.3 Probe Effectiveness

Table 2 shows the version we covered and the result of probes
generated from these versions. We successfully retrieved
the Pull Request discussions for 7,963 features. Based on
the documents collected and CoT prompts, Qwen identified
the relevant guidance for 6,657 functional features. By auto-
matically matching standardized command templates, 3,681
probes were saved, all correctly formatted.

By automatically applying the ethical filtering rules out-
lined in Section 3.1 and testing the saved probes under various
security configurations, we retained only those that produced
distinguishing responses across different versions, as shown
in Table 9 in the appendix.

Finally, we filtered out 2,423 ineffective probes that were
either potentially harmful or exhibited poor classification per-
formance, and obtained 552 valid probes for Elasticsearch,
134 for Redis, 282 for Dubbo, 114 for Joomla, and 176 for
phpMyAdmin. The probe availability reached 34.17%.

Software VersionSeek Nmap Metasploit Blindelephant WhatWeb

Imp. # Imp. # Imp. # Imp.

Elasticsearch 98 28 250.00% 64 53.13% - - - -
Redis 100 74 35.13% 75 33.33% - - - -
Dubbo 100 - - - - - - - -
Joomla 98 - - 81 20.99% 62 58.06% 66 48.48%

phpMyAdmin 96 - - - - 62 54.83% 25 284.00%

Table 3: The version identification performance of VersionSeek and four tools across 100 servers for each of four services. Imp.
indicates the improvement factor.

The number of response variants of a probe is related to its
change frequency. We found that more than 88.01% probes
can classify responses and versions into 2 to 5 categories.
Additionally, some probes target frequently changing fea-
tures, causing a higher number of categories. For example,
the probe “GET /xpack/usage” in Elasticsearch, associated
with the widely used xpack feature, changes frequently across
minor versions, and can classify versions into 17 categories.

Even without authorization credentials, which typically
result in error messages, the differences in error handling
across versions still allow our probes to distinguish them.
For example, the Elasticsearch probe “GET /_termvec-
tors?fields=nested_field” returns an “Incorrect HTTP method”
error in v6.8.0 - v6.8.23, while other versions report “missing
authentication credentials.” Additionally, due to the enhanced
security measures introduced from version 8.0.0, their error
message are more detailed compared to earlier versions, in-
cluding v5.0-v5.6 and v7.1-v7.17.

4.4 Scanning Efficiency

We evaluated the runtime performance of VersionSeek during
the local experiment, as shown in Table 7 in the appendix.
We took 234 hours to generate all the probes, averaging one
minute per functional feature using LLM. Although probe
generation is time-consuming, it’s a one-time process for each
software. In actual software version identification, only probe
scheduling and execution are repeatedly performed. Probe
scheduling is typically completed within a few seconds, and
the average execution time per probe is approximately 1.4
seconds.

Table 7 in the appendix presents the average scanning over-
head of VersionSeek on real servers. When scanning all locally
deployed versions of the services, we identified each version
using very few probes. Specifically, VersionSeek required an
average of 5.8 probes for Elasticsearch, 4.867 for Dubbo,
2.633 for Redis, 6.233 for Joomla, and 9.416 for phpMyAd-
min. Compared to scanning a Joomla website with WhatWeb
in aggressive mode, which typically requires sending 18 re-
quests, we achieved 65.37% fewer packages sent. And we can
complete the scanning in 7.4 to 14.611 seconds on average.

This demonstrates the feasibility of conducting large-scale
version identification measurements using VersionSeek.

4.5 Version Identification Performance

Baselines and Experimental Setup. We systematically col-
lected software version identification tools by searching key-
words such as “software/service version identify/infer/detect”
and expanded our collection by exploring citation relation-
ships. Ultimately, we collected eight tools: Wappalyzer [30],
VersionInferrer [31], WhatWeb [23], BlindElephant [6],
Nmap [16], Zgrab [32], Nmap Scripting Engine [33], and
Metasploit [22].

The first four tools [6, 23, 30, 31] are designed for web
applications, making them ineffective for identifying non-
HTTP(S) services. However, since Wappalyzer transitioned
from open-source to closed-source and VersionInferrer de-
pends on Wappalyzer’s files, we selected WhatWeb, BlindEle-
phant, and Metasploit-Joomla for comparison. In contrast,
widely used scanning tools like Nmap and Zgrab support mul-
tiple protocols and services. Additionally, Metasploit and the
Nmap Scripting Engine (NSE) include numerous exploits for
various software. We analyzed their source code and extracted
only those components specifically designed for version iden-
tification. Code analysis shows that NSE, Metasploit, and
Zgrab use similar methods to identify Elasticsearch, Redis,
and Dubbo. We selected Metasploit as a representative for
comparative analysis.

All comparison tools are configured for optimal perfor-
mance. Specifically, BlindElephant is preset with the applica-
tion software type, while both WhatWeb and BlindElephant
operate in aggressive mode. Besides, both BlindElephant
and WhatWeb were equipped with the latest 2024 fingerprint
database, based on the source code provided in Kondracki
and Nikiforakis [9].

To enable a detailed comparison between VersionSeek and
these modern techniques, we implemented both approaches
on phpMyAdmin, a representative target, as existing tools pro-
vide comparatively more comprehensive fingerprint databases
for this software. Specifically, to construct a training dataset,

we utilized 15 probes from BlindElephant, which are the de-
fault probes used for identifying the phpMyAdmin version,
along with their corresponding responses collected from 164
locally deployed instances of different phpMyAdmin versions.
Based on this dataset, we implemented two version identifica-
tion tools: one leveraging a random forest algorithm to train a
machine learning–based classifier, and the other employing
black-box differential analysis to construct a decision tree for
version identification.
Compared to existing tools. Table 3 presents the results of
evaluating VersionSeek and four existing tools on the online
servers described in Section 4.1. VersionSeek demonstrates
significant performance improvements over all four tools, no-
tably a 284.00% increase in accuracy for phpMyAdmin com-
pared to WhatWeb. For Dubbo, existing tools detect only the
service type via the "dubbo" string, while our tool successfully
identifies their versions.

Nmap uses its regex-based nmap-service-probes [1]
database for version detection, but performs poorly on Elas-
ticsearch (28%) due to flexible JSON fields and dynamic val-
ues causing mismatches. Metasploit parses response content
based on protocol specifications, achieving better performance
on Elasticsearch (64%) than Nmap. When authentication is
enabled, both Nmap and Metasploit fail due to a mismatch
with the expected predefined string or pattern. In contrast,
VersionSeek can identify versions even when authentication
is enabled or access is restricted. For instance, we identified
minor versions of 32 Elasticsearch servers and patch versions
of 4 Elasticsearch servers, all with authentication enabled.
We also identified minor versions of 5 Redis servers with
authentication, as well as major versions of 16 Redis servers
and minor versions of 4 Redis servers, all of which denied
external access.

Unlike the previous two, the default handshaking response
of Dubbo has no version numbers, and lacks commands like
"INFO" to directly obtain version information. Therefore,
neither Nmap nor Metasploit could identify any Dubbo server
versions. Our tool, however, identifies versions by updated
functional changes in commands such as “invoke” and “help”.
On 100 Dubbo servers, VersionSeek identified 46 versions at
the patch level, 49 at the minor level, and 5 at the major level.

Existing Joomla version identification tools, such as those
using asset file hashes, are increasingly ineffective as admin-
istrators adopt countermeasures. For instance, 17 websites
blocked access to version-revealing paths like “language/en-
GB/en-GB.xml”, causing Metasploit-Joomla to fail in ver-
sion identification. In contrast, VersionSeek leverages func-
tional probes for version identification. For example, the “htac-
cess.txt” probe is a configuration file preconfigured by Joomla
with security guidelines and environment checks, changes
across versions due to updates in deployment and config-
uration. Finally, VersionSeek successfully identified minor
versions of 8 websites and patch versions of 90 websites.

Similar to Joomla, existing phpMyAdmin version detection

tools highly rely on predefined string patterns and hash-based
matching. However, these rule sets are typically public, al-
lowing administrators to block corresponding paths such as
“/doc/html/setup.html” and “/ChangeLog”. Such measures
were adopted by 18 websites, causing BlindElephant to fail.
Differently, VersionSeek infers version by analyzing func-
tional differences, such as variations in supported languages
on default pages, which are typically accessible. As a result,
VersionSeek identified major versions of 3, minor versions of
6, and patch versions of 87 phpMyAdmin servers.

Overall, excluding eight servers running versions not cov-
ered by VersionSeek, based on functional probes, VersionSeek
has good performance on all five software. Even with se-
curity mechanisms enabled or when responses lack explicit
version information, our tool identifies versions by analyz-
ing functional differences, successfully recognizing 21 major,
107 minor, and 50 patch versions that might otherwise be
overlooked by other tools.
Compared to modern methods. We evaluated the black-
box differential and ML-based methods on 100 real-world
phpMyAdmin servers, which identified 73 and 59 versions, re-
spectively. VersionSeek achieved superior performance, with
improvements of 31.50% and 62.71% over the two methods.

This performance gap can be attributed to both black-box
differential and ML-based approaches using publicly avail-
able probes from BlindElephant, which may be blocked by
administrators. We observed that 18 servers had implemented
such defenses, rendering these methods ineffective.

In contrast, some functionality-based probes remain effec-
tive. For instance, essential pages like index.php, which are
rarely blocked, expose version-specific differences (e.g., ver-
sion 4.9.2 introduced Thai support, reflected by an additional
language option on the interface), enabling VersionSeek to
infer version. Besides, compared to VersionSeek, requiring
9.41 probes on average, the ML-based method incurs higher
request overhead, as it always sends 15 probes to each target
to construct fixed-size input vectors from the responses. Al-
though the black-box differential method employs a decision-
tree-based approach that reduces probe usage to some extent,
its identification performance degrades when a probe fails, as
it lacks dynamic decision tree generation, preventing the se-
lection of an effective alternative probe. This limitation often
arises in real-world settings where user-customized configu-
rations may render certain probes ineffective.

4.6 Robustness of Version Identification

Methodology. We simulate adversarial scenarios by applying
two version concealing techniques: obfuscation and hiding.
Based on our preliminary study, except for Dubbo, all other
studied software provide version information through specific
paths or commands, as summarized in Table 4. In the obfus-
cated scenario, version strings in responses are replaced with
placeholders, i.e., x.x.x. In the hiding scenario, requests to

Software Commands / Paths

ElasticSearch [3] /
Redis [11] INFO

Joomla [12] /administrator/manifests/files/joomla.xml,
/language/en-GB/en-GB.xml

phpMyAdmin [13] /README, /ChangeLog

Table 4: Version Disclosure Commands or Paths.

version-leaking paths or commands are blocked entirely.
Specifically, by employing proxy-based request intercep-

tion on our locally deployed servers, we constructed this ad-
versarial dataset to evaluate the robustness of version identifi-
cation, comparing VersionSeek against existing tools.
Result Analysis. The experimental results are shown in Ta-
ble 8 in the appendix. Under both adversarial scenarios, Ver-
sionSeek achieves 100% version identification rate across four
software by leveraging functional response differences rather
than relying on predefined version patterns such as version
strings. In the obfuscation setting, version-specific changes
remain observable outside the version string. For instance,
starting from Redis version 6.2.0, the INFO response includes
a new field, “server_time_usec”, which helps distinguish it
from earlier versions. In the hiding setting, when probes fail
due to altered responses, VersionSeek automatically generates
and evaluates subsequent decision trees to continue inference.
In contrast, tools such as Nmap and Metasploit, which rely
heavily on explicit version strings, fail to identify Redis and
Elasticsearch versions under both conditions.

Although BlindElephant demonstrates a certain level of
robustness for Joomla and phpMyAdmin (29%, 100%), it
lacks a dynamic scheduling strategy and consistently sends a
fixed set of 15 probes to each server.

In summary, VersionSeek shows strong robustness in adver-
sarial settings by identifying versions through functional dif-
ferences rather than explicit version disclosures. Furthermore,
its dynamic decision tree enables adaptive probe selection
based on runtime responses, achieving accurate identification
with fewer requests than traditional hash-based methods.

5 Real-World Measurement

Based on laboratory experiment results, we developed a ver-
sion scanning tool to evaluate the distribution of vulnerable
softwares in real-world scenarios. To adhere to ethical guide-
lines, we implemented several measures, such as minimizing
system impact and avoiding brute-force–like behavior. Fur-
ther details are provided in the Ethics Considerations section.

5.1 Dataset
Due to the time required for scanning all open devices on the
internet and potential ethical concerns, we utilized Shodan

and FOFA real-time updated scan results as the data source
because they employ the most aggressive scanning strategy
compared to other well-known device search engines [34].

We crawled real-time updated data from Shodan and FOFA
over a two-month period, collecting records that include host
and port information, response data, and identified service
types. According to our analysis, among the five studied soft-
ware systems, only a subset of Redis and Elasticsearch records
contain explicit version information.

To mitigate potential bias from the presence or absence
of version information in server records, we used platform-
specific search syntax to construct targeted queries that ob-
tained both versioned and non-versioned records for Redis and
Elasticsearch, as well as records for the other three software.
As shown in Table 5, we collected 60,315 distinct Elastic-
Search servers, 178,477 Redis servers, 10,114 Dubbo servers,
150,776 Joomla servers, and 75,599 phpMyAdmin servers.

Software Shodan FOFA Total
w version w/o version w version w/o version

Elasticsearch 18,893 13,107 21,947 6,368 60,315
Redis 83,015 17,375 42,284 35,803 178,477
Dubbo - 5,205 - 4,909 10,114
Joomla - 106,607 - 44,169 150,776

phpMyAdmin - 45,536 - 30,063 75,599

Total 101,908 187,830 64,231 121,312 475,281

Table 5: Data record across five software retrieved from
Shodan and FOFA.

Since these records are time-sensitive, some servers were
offline or had connection timeouts during our scans. As shown
in Table 6, we successfully identified the version for 240,020
servers out of 277,251 active ones. Among these, 191,102
servers lacked any version information. For the remaining
86,149 servers with reported versions, our tool achieved an
identification rate of 97.23%. Failures were mainly due to
outdated versions not included in our database. Other con-
tributing factors included service migration, request denials,
and honeypots, which are further discussed in Section 5.3.

Most of our identification results are at the minor(27.33%)
and patch levels (68.29%), and since software vulnerabilities
typically occur within specific version ranges, our results are
enough to match the most relevant vulnerability databases.
Then we assessed vulnerability threats by matching the cor-
responding CVEs. Specifically, we used the CVE Details
API [35], requesting and obtaining vulnerability information
for each version, including CVE ID, description, severity, and
other fields we use for further analysis.

5.2 Results

To illustrate the potential risks associated with overlooked
version information, we mapped the identified version results
from our tool to their corresponding CVEs. As our functional

Software # of Server Major Minor Patch

Elasticsearch 34,631 455 8,332 25,844
Redis 90,245 9,919 26,409 53,917
Dubbo 4,671 141 1,999 2,531
Joomla 70,215 12 24,827 45,376

phpMyAdmin 40,258 2 4,020 36,236

Total 240,020 10,529 65,587 163,904

Table 6: Real-world large-scale version identification results.

change-based version identification tool returns a list of ver-
sions, potentially spanning one or more minor version ranges,
we use the union of CVEs associated with each version as
identified potential vulnerabilities. Figure 7 shows the version
distribution and the corresponding CVEs for five software.
Elasticsearch. We identified version information for 21,162
open and 13,469 authenticated Elasticsearch servers. Fig-
ure 7(a) reveals that the most prevalent server version range
(26.84%) 7.14.0–7.17.12 (August 2021 – July 2023), is vul-
nerable to 10 CVEs, including 5 high-risk vulnerabilities (e.g.,
privilege escalation, denial of service). The most critical one
is CVE-2023-31418 [36], which was patched in versions
7.17.13 and 8.9.0, potentially affecting 27,035 servers, of
which 10,252 are authentication servers.

Compared to Shodan and FOFA, VersionSeek identified
versions for 13,153 more servers, of which 12,950 require
authorization. The versions of these authorized servers are
mainly concentrated between 6.8.0 and 8.8.2, totaling 9,687
servers. A possible reason for this trend is that starting with
version 6.8.0, Elasticsearch introduced free security features,
such as role-based access control, to manage user access [37].
Redis. We identified 60,139 open, 19,265 requiring authenti-
cation, and 10,841 Redis servers that denied remote access.
As shown in Figure 7(b), versions 7.4.0–7.4.1 (28.29%) are
the most prevalent, released after July 2024, and only related
to two CVEs. Besides, only 6.27% have enabled authoriza-
tion among these servers, while the remaining 93.73% are at
significant risk of security threats.

Compared to Shodan and FOFA, VersionSeek identified
16,370 more servers requiring authorization and 10,841
servers denying external access. Although deny-type servers
return denied messages for any request, the responses vary
across versions due to functional changes, as shown in Fig-
ure 8. Versions before 7.0 emphasize “bind address” while
versions after 7.0 only emphasize “set password for default
user”. Additionally, version 7.0 contains a typo ("setup a an"),
which was fixed in version 7.2. These observations allow us
to categorize the deny servers into three types. Among them,
7,460 (68.81%) are running versions earlier than 7.0, indicat-
ing some users with older versions recognized the insecurity
of not setting a password and thus restricted external access.
Dubbo. We identified the Dubbo version for 4,671 Dubbo

servers out of 4,711 online ones. Figure 7(c) shows that
versions 2.5.5–2.5.10 (last updated 2018, 23.83%) and
2.6.8–2.6.12(last updated 2021, 21.17%) are most prevalent,
associated with 9 and 8 CVEs, respectively. Eight of these
CVEs are critical, mainly related to deserialization vulner-
abilities that lead to remote code execution. Furthermore,
we observed that 855 servers (18.30%) were running minor
version 3.2, released in April 2023. The versions are associ-
ated with significantly fewer known CVEs, highlighting the
importance of timely updates in mitigating vulnerabilities.
Joomla. We identified the Joomla version for 70,215 servers
out of 77,272 online servers, while the remaining servers re-
jected connection requests. Figure 7(d) shows that the most
popular minor version is 3.9, with 17,077(24.32%) servers.
62.28% of these servers are in the version range 3.9.2–3.9.10,
last updated in July 2019, and potentially affected by at least
73 CVEs. Among these, the most severe are CVE-2019-
19846 [38] and CVE-2022-23797 [39] (CVSS 9.8), which
affect 39,148 (55.75%) and 47,865 (68.17%) servers, respec-
tively, highlighting the significant vulnerability threats Joomla
faces in real-world scenarios. Besides, 17,538 (24.98%) of
deployed Joomla versions are lower than 3.3.0, last updated
in April 2014, indicating that some users still persist in using
outdated versions from a decade ago or earlier.
phpMyAdmin. We identified the phpMyAdmin version for
40,258 servers out of 59,073 online servers. Figure 7(e) shows
that the most popular minor versions are 5.1.0–5.1.4 (last up-
dated in May 2022, 44.31%) and 5.2.0–5.2.1 (last updated in
Feb 2023, 35.47%), associated with 7 and 3 CVEs, respec-
tively. The most severe among them is a CRITICAL SQL
Injection vulnerability (CVSS 9.8), CVE-2020-22452, which
affects versions 5.0.0–5.1.4 (48.40%). Earlier versions are af-
fected by more vulnerabilities, but their adoption rate remains
low, accounting for only 16.14% of deployments.

Overall, our measurement reveals that for each remote soft-
ware, a significant portion (79.57%, 71.71%, 81.70%, 73.14%,
64.53%) of Elasticsearch, Redis, Dubbo, Joomla and php-
MyAdmin users are still deploying versions released at least
one year ago or earlier, accounting for 72.25% of all measured
services. The most severe case is Joomla, where 24.98% of
users continue using decade-old versions. This highlights that
these alive remote services remain at significant risk of vul-
nerabilities. Besides, enabling the security measures provided
by the software can significantly reduce potential threats and
prevent some untrusted scanning or identification activities.

5.3 Case Study

During large-scale scanning, we found some misreported re-
sults from Shodan, i.e., honeypots, which are deliberately
designed systems used by researchers to lure malicious attack-
ers and analyze their techniques. We identified some servers
suspected to be honeypots, which exhibited two key charac-
teristics: incomplete function and unchanging responses.

5.0
.0-

5.6
.16

6.0
.0-

6.7
.2

6.8
.0-

6.8
.23

7.1
.0-

7.3
.2

7.4
.0-

7.4
.2

7.5
.0-

7.6
.2

7.7
.0-

7.7
.1

7.8
.0-

7.1
1.2

7.1
2.0

-7.
13

.4

7.1
4.0

-7.
17

.12

7.1
7.1

3-7
.17

.23

8.0
.0-

8.8
.2

8.9
.0-

8.1
4.3

8.1
5.0

-8.
15

.3

Version Range

0

2500

5000

7500

10000
N

um
be

r
Co

un
t no auth

with auth
engine

0

5

10

15

CV
E

Co
un

t

11

17

12

16

14
15

14

18

13

10

4

10 10

0

9 9

3

15
14

12

14

9 9

7

1

8

0 0

CVE Union
CVE Intersection

(a) Elasticsearch

3.2
.0-

3.2
.12

4.0
.0-

4.0
.14

5.0
.0-

5.0
.14

6.0
.0-

6.0
.15

6.0
.16

-6.
0.2

0

6.2
.0-

6.2
.5

6.2
.6-

6.2
.16

7.0
.0-

7.0
.15

7.2
.0-

7.2
.4

7.2
.5-

7.2
.6

7.4
.0-

7.4
.1

Version Range

0

8000

16000

24000

N
um

be
r

Co
un

t

no auth
with auth
engine

0

6

12

18

CV
E

Co
un

t

13 13

19
20

12

20

12

18

6

3
2

13 13

11

20

8

20

2
3 3 3

1

CVE Union
CVE Intersection

(b) Redis

2.5
.5-

2.5
.10

2.6
.1-

2.6
.7

2.6
.8-

2.6
.12

2.7
.6-

2.7
.12

2.7
.13

-2.
7.2

3

3.0
.0-

3.0
.10

3.0
.11

-3.
1.1

1

3.2
.0-

3.2
.13

Version Range

0

400

800

1200

N
um

be
r

Co
un

t no_auth

0

5

10

15

CV
E

Co
un

t

9
10

8

16

4

6

4

1

9
10

2

8

1
2

1 1

CVE Union
CVE Intersection

(c) Dubbo

3.0
.0-

3.1
.6

3.2
.0-

3.4
.8

3.5
.0-

3.6
.5

3.7
.0-

3.8
.2

3.8
.4-

3.9
.1

3.9
.2-

3.9
.10

3.9
.11

-3.
9.2

8

3.1
0.0

-3.
10

.12

4.0
.2-

4.2
.7

4.2
.8-

4.3
.4

4.4
.0-

5.0
.3

5.1
.0-

5.2
.1

Version Range

0

6000

12000

18000

N
um

be
r

Co
un

t no_auth

0

40

80

120

CV
E

Co
un

t

114

142

124
117 114

91

72

13
19

13 11 10

114 114 116
107

85
73

13
7

14 11
5 5

CVE Union
CVE Intersection

(d) Joomla

4.0
.10

.1-
4.0

.10
.20

4.1
.4-

4.1
.14

.8

4.2
.0-

4.3
.13

.3

4.4
.0-

4.4
.15

.10

4.5
.0-

4.5
.5.

1

4.6
.0-

4.6
.6

4.7
.0-

4.7
.9

4.8
.0-

4.8
.5

4.9
.0-

4.9
.11

5.0
.0-

5.0
.4

5.1
.0-

5.1
.4

5.2
.0-

5.2
.1

Version Range

0

5000

10000

15000

N
um

be
r

Co
un

t no_auth

0

30

60

90

CV
E

Co
un

t

87

34
40

93

35

89

22 21
14 13

7 3

20 19 19 21 20 21 18
12

2 5 4 2

CVE Union
CVE Intersection

(e) phpMyAdmin

Figure 7: Distribution of version ranges and their corresponding number of CVEs for Elasticsearch servers (with and without
authentication, and found by device search engines like Shodan), Redis servers (with and without authentication, and found by
device search engines like Shodan), Dubbo, Joomla and phpMyAdmin servers. We merged our results at minor version level.

An example of incomplete function includes servers fail-
ing to correctly parse command arguments in Redis. When
sending a request like “NOTCOMMAND ARGS”, older Re-
dis versions typically return an error message like “ERR un-
known command NOTCOMMAND”. Compared, newer ver-
sions append additional details, e.g., “with args beginning with
ARGS’. Some servers mimic the response of newer versions
but fail to parse the arguments correctly. Their response is
like “ERR unknown command NOTCOMMAND, with args
beginning with:” without parsing “ARGS,” revealing incon-
sistencies in their functionality. Also, we found some servers
identified as Elasticsearch by Shodan consistently returned
the default response irrespective of the request parameters or
path, exhibiting unchanging responses.

These honeypot examples show that many version identifi-
cation tools, which rely on fixed requests to obtain responses,
can be easily deceived by fabricated simple responses. In
contrast, VersionSeek, based on functional changes, achieves
efficient and accurate version identification by dynamically
scheduling the optimal sequence of probes.

6 Discussion

6.1 Security Implication

Our research proposes a novel approach to version identifi-
cation, leveraging functional changes to distinguish between
different versions based on subtle response variations that are

DENIED Redis is running in protected mode because protected
mode is enabled, no bind address was specified, no authentication
password is requested to clients.
1)2)3)
4) Setup a bind address or an authentication password.

DENIED Redis is running in protected mode because protected
mode is enabled and no password is set for the default user.
1)2)3)
4) Setup a an authentication password for the default user.

DENIED Redis is running in protected mode because protected
mode is enabled and no password is set for the default user.
1)2)3)
4) Set up an authentication password for the default user.

< 7.0

 7.0

> 7.0

Figure 8: Responses from different minor versions of the
Redis server that deny external access.

less likely to be modified or detected. Our tool demonstrates
better scalability, applicability, and robustness compared to
existing version identification tools.

Our measurement reveals that many users still rely on out-
dated servers and fail to enable the security measures provided
by the software, exposing them to vulnerability threats. Com-
pared to the results of state-of-the-art device search engines,
we identified and assessed a broader attack surface that was
previously overlooked due to missing version information.

6.2 Limitation
Although our VersionSeek achieved the best remote ver-
sion identification performance, we acknowledge that our
approach has limitations. First, the probe generation of Ver-
sionSeek relies on the testing of locally deployed components.
While applicable to all versions, source code and dependen-
cies were hard to collect for many older versions, thus, we
focused on the past decade. Missing deployment environment
of some versions within this timeframe also results in impre-
cise version identification for them. However, the expected
low prevalence of services consistently running these missing
versions minimizes their impact on the overall results.

Secondly, VersionSeek’s effectiveness is reduced against
authenticated components, as many probes require authentica-
tion. However, VersionSeek can still infer approximate version
ranges even in these cases based on the analysis of differences
in error handling across versions (see Section 4.3). This limi-
tation also underscores the enhanced security of authenticated
services, presenting a higher barrier to compromise.

Thirdly, while VersionSeek is theoretically applicable to
closed-source or proprietary software systems, its practical
effectiveness in such contexts may be constrained by the un-
availability of detailed development information. Specifically,
the lack of sufficient insights into these systems makes it
more difficult to automatically analyze their programs and
extract functional changes, thereby limiting the generation
of effective probes. Expanding the probes in such cases may
require additional manual efforts, such as reverse engineering
or crowdsourced analysis.

Finally, some versions may lack suitable functional probes,
preventing accurate version identification. Not all feature
changes can be used to generate corresponding probes, such
as dependency upgrades or performance enhancements. Ad-
ditionally, certain adjacent versions with only patch-level dif-
ferences (e.g., Elasticsearch 6.8.18-6.8.23) do not exhibit sig-
nificant modifications beyond dependency upgrades, making
them difficult to distinguish. Moreover, some probes require
specific preconditions, for example, the Redis “CLUSTER
INFO” probe needs a clustered server configuration, limiting
their applicability to testing non-clustered servers.

7 Related Work

Side Channel. Freiling and Schinzel [40] proposed a storage
side channel on web servers by comparing response differ-
ences across web applications, and used this to extract sensi-
tive data such as existing usernames in public libraries and
private images in real-world systems. In our work, our mo-
tivation example for distinguishing Elasticsearch versions is
similar to this side channel.
Web application version identification. Prior works on
web application version identification adopted two main
approaches. Version string-based methods, such as Wappa-
lyzer [30], use rule databases to infer software types and
versions, and have been applied at scale to analyze web tech-
nology stacks [4, 5]. Feature-matching methods rely on struc-
tural features such as image file sizes, JavaScript function
names [7], XPath structures, and file hashes [8] for website
fingerprinting. Kondracki and Nikiforakis [9] summarized
these techniques and proposed a sandbox framework for ana-
lyzing fingerprinting tools.
Fingerprinting applications. Website fingerprinting enables
a local attack to determine which websites a user visits over
an encrypted connection. Overdorf et al. [41] analyzed var-
ious website fingerprinting methods and evaluated 482 Tor
onion services. Sirinam et al. [42] introduced a Tor attack
using CNN, which can bypass some website fingerprinting
defenses, while Guan et al. [43] proposed the Block Attention
Profiling Model for identifying multiple websites in a global
view. Browser fingerprinting leverages device and browser
characteristics for tracking without cookies. Li and Cao [44]
conducted a large-scale analysis of millions of browser fin-
gerprints to study their dynamics, and Torok and Levy [45]
proposed an entropy-based defense method.

8 Conclusion

We propose a novel version identification method based on
functional changes and implemented a prototype framework,
VersionSeek, on five well-known remote software systems
with numerous vulnerabilities. VersionSeek achieved a signifi-
cantly higher identification rate than existing version identifi-

cation tools, with a 284% improvement on phpMyAdmin and
a unique ability to identify Dubbo versions. Furthermore, we
conducted a large-scale version identification experiment us-
ing VersionSeek, successfully identifying version information
for 240,020 software instances, with 95.61% of the results
achieving minor and patch-level identification. Analyzing the
results, we discovered user preferences in version selection
and highlighted the severe security vulnerabilities that could
result from using outdated versions and failing to enable se-
curity features.

Acknowledgment

We would like to thank the anonymous reviewers for their
valuable comments, which improved the quality of the pa-
per. This work was the National Natural Science Foundation
of China (62302101, 62402114, U2436207). Haixin Duan’s
work was supported partly by the Taishan Scholars Program.
Min Yang is the corresponding author, a faculty of Shanghai
Institute of Intelligent Electronics & Systems and Engineering
Research Center of Cyber Security Auditing and Monitoring,
and Shanghai Collaborative Innovation Center of Intelligent
Visual Computing, Ministry of Education, China.

Ethics Considerations

We introduce a novel approach to software version identifi-
cation by analyzing functional changes, particularly in cases
where existing scanning tools fail due to missing version ban-
ners or active security configurations. The purpose of this
tool is to assist security researchers in identifying outdated or
vulnerable systems that may otherwise be overlooked.

Recognizing the potential ethical risks associated with net-
work scanning, we followed several design principles in tool
implementation to operate in a way that minimizes disruption,
avoids intrusion, and respects the operational integrity of the
targeted systems.
Use of Official Functionalities. VersionSeek’s all probes are
derived from standard functionalities publicly documented by
the corresponding software vendors. The tool invokes their
functionalities in their intended form, avoiding malformed or
ambiguous inputs. Functionalities associated with bug fixes
or known crash paths were excluded to reduce the risk of
triggering server-side failures (see Section 2). Rather than
attempting to exploit vulnerabilities, the approach focuses on
benign differences in behavior across software versions.
Minimizing System Impact. To minimize the probability
of impacting remote servers, the tool avoids any commands
or methods that may alter server state or data. For instance,
HTTP methods like POST, PUT, DELETE, and PATCH were
excluded. For terminal-based protocols, commands that affect
configuration, state, or storage (e.g.,, flush, shutdown, SET,
DEL) were filtered out.

Avoiding Brute-force-like Behavior. Although some legiti-
mate functionalities may involve login or directory traversal,
the scanning logic should avoid repeated login attempts or
recursive exploration. VersionSeek sent fewer than two login
requests per server on average, well below the threshold of
brute-force login attempts. Nevertheless, the tool does not
exclude any form of username enumeration. Additionally, for
HTTP services, only known, documented, and locally veri-
fied paths were used, and no blind directory enumeration was
performed.
Polite Scanning. The tool is implemented to scan in a polite
and resource-conscious manner. Firstly, as detailed in Sec-
tion 3.3, an algorithm is developed to plan minimal probe
sequences, with the goal of reducing the number of probes
per scan. Secondly, the number and frequency of probes per
host are limited strictly to prevent excessive scanning. Ad-
ditionally, rather than sending all probes simultaneously, the
tool schedules each subsequent probe based on the previous
response, resulting in probes that are spaced out with timing
intervals approximating normal user interactions. If a server
refuses a connection, scanning ceases immediately for that
host.
Data Use and Privacy. In our large-scale scanning experi-
ments, scanned response data were used exclusively for the
purpose of software version identification. No attempts were
made to extract or correlate host-specific, personal, or confi-
dential information. Data was handled in a manner that avoids
unintentional disclosure or misuse.
Responsible Disclosure. We actively communicated with
vendors and users to disclose our findings regarding the Elas-
tic vulnerability and outdated or vulnerable servers detected
on the Internet. First, we reported the potential username enu-
meration behavior, as demonstrated in our motivation example
(Figure 1), to the Elastic team. In response, they clarified that
merely confirming whether an email or username is associated
with an account does not constitute a direct security impact
or significantly facilitate further attacks.

For outdated or vulnerable servers identified in the real
world, we conducted a responsible disclosure by retrieving
WHOIS information associated with the server to extract ad-
ministrator email contacts. We successfully identified 8,077
unique email addresses and successfully sent 4,983 respon-
sible disclosure emails informing them of potential security
risks. Over 86.9% of the responses were automated replies.
11 administrators expressed appreciation for our notification
and indicated that they would attempt to update or patch the
affected systems.

Open Science

We are committed to the open science policy and will make all
relevant source code, datasets, and generated artifacts publicly
available. However, response data and identification results
derived from real-world servers will not be released, as public

access to such information could potentially enable malicious
exploitation or attacks against these servers.

We have made our code publicly available at https://
doi.org/10.5281/zenodo.15576928, including modules
for software deployment, functional probe generation, re-
sponse processing, and version identification. The repository
also contains ethically filtered and validated probes with their
locally generated response outputs, as well as the source code
and training data used for the comparative baseline.

References

[1] Nmap. (2024) nmap-service-probes. https://svn.nmap.
org/nmap/nmap-service-probes.

[2] L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-szz: Au-
tomatic identification of version ranges affected by cve
vulnerabilities,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022, pp.
2352–2364.

[3] Elastic. Elasticsearch: The Official Distributed Search
& Analytics Engine | Elastic — elastic.co. https://www.
elastic.co/elasticsearch.

[4] F. Marquardt and L. Buhl, “Large scale monitoring of
web application software distribution to measure threat
response behavior,” Electronic Communications of the
EASST, vol. 80, 2021.

[5] Y. Shi, W. Yu, Y. Zhao, and Y. Jia, “A web application fin-
gerprint recognition method based on machine learning.”
CMES-Computer Modeling in Engineering & Sciences,
vol. 140, no. 1, 2024.

[6] GitHub - lokifer/BlindElephant: Getting BlindElephant
into a working state, and updating the plugin files —
github.com. https://github.com/lokifer/BlindElephant.

[7] C. Dresen, F. Ising, D. Poddebniak, T. Kappert, T. Holz,
and S. Schinzel, “Corsica: Cross-origin web service
identification,” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security,
2020, pp. 409–419.

[8] F. Marquardt and L. Buhl, “Déjà vu? client-side fin-
gerprinting and version detection of web application
software,” in 2021 IEEE 46th Conference on Local Com-
puter Networks (LCN). IEEE, 2021, pp. 81–89.

[9] B. Kondracki and N. Nikiforakis, “Smudged finger-
prints: Characterizing and improving the performance of
web application fingerprinting,” in 33rd USENIX Secu-
rity Symposium (USENIX Security 24), 2024, pp. 4625–
4640.

[10] Apache. (2024) Apache dubbo. https://cn.dubbo.apache.
org/.

[11] Redis. (2024) Redis github. https://github.com/redis/
redis.

[12] Joomla. (2024) Joomla github. https://github.com/
joomla/joomla-cms.

[13] phpMyAdmin Project, “phpmyadmin – a web interface
for mysql and mariadb,” https://www.phpmyadmin.net/,
2025.

[14] Shodan. (2013) Shodan.io. https://www.shodan.io/.

[15] FOFA. (2024) Fofa search engine. https://fofa.info/.

[16] G. Lyon. (2024) Nmap: the network mapper - free secu-
rity scanner. https://nmap.org/.

[17] (April 23, 2024) Usage statistics and market shares
of content management systems. https://w3techs.com/
technologies/overview/content_management.

[18] (June 23, 2024) Apache: Dubbo Security Vulnerabili-
ties. https://cvedb.shodan.io/dashboard/vulnerabilities?
product=dubbo.

[19] (June 5, 2024) Elasticsearch Security Vulnerabilities.
https://vulners.com/search?query=elasticsearch.

[20] (June 5, 2024) Redis Security Vulnerabilities. https://
vulners.com/search?query=redis.

[21] (June 5, 2024) phpmyadmin Security Vulnerabilities.
https://vulners.com/search?query=phpmyadmin.

[22] Metasploit. Metasploit the world’s most used penetra-
tion testing framework. https://www.metasploit.com/.

[23] (2024) Whatweb. https://github.com/urbanadventurer/
WhatWeb.

[24] ServerMask : The Official Microsoft IIS Site.
https://iis-umbraco.azurewebsites.net/downloads/
community/2009/01/servermask.

[25] (2024) Semantic Versioning. https://semver.org/.

[26] I. GitHub. (2022) Github rest api. https://docs.github.
com/en/rest.

[27] (2024) Jubbo showcase. https://showcase.joomla.org/.

[28] Hobbit. (2024) Netcat introduction. https://nmap.org/
ncat/.

[29] (2024) Llm leaderboard. https://artificialanalysis.ai/
leaderboards/models.

[30] E. Alias. (2024) Find out what websites are built with -
wappalyzer. https://www.wappalyzer.com/.

https://doi.org/10.5281/zenodo.15576928
https://doi.org/10.5281/zenodo.15576928
https://svn.nmap.org/nmap/nmap-service-probes
https://svn.nmap.org/nmap/nmap-service-probes
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://github.com/lokifer/BlindElephant
https://cn.dubbo.apache.org/
https://cn.dubbo.apache.org/
https://github.com/redis/redis
https://github.com/redis/redis
https://github.com/joomla/joomla-cms
https://github.com/joomla/joomla-cms
https://www.phpmyadmin.net/
https://www.shodan.io/
https://fofa.info/
https://nmap.org/
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://cvedb.shodan.io/dashboard/vulnerabilities?product=dubbo
https://cvedb.shodan.io/dashboard/vulnerabilities?product=dubbo
https://vulners.com/search?query=elasticsearch
https://vulners.com/search?query=redis
https://vulners.com/search?query=redis
https://vulners.com/search?query=phpmyadmin
https://www.metasploit.com/
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://iis-umbraco.azurewebsites.net/downloads/community/2009/01/servermask
https://iis-umbraco.azurewebsites.net/downloads/community/2009/01/servermask
https://semver.org/
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://showcase.joomla.org/
https://nmap.org/ncat/
https://nmap.org/ncat/
https://artificialanalysis.ai/leaderboards/models
https://artificialanalysis.ai/leaderboards/models
https://www.wappalyzer.com/

[31] T. Pascal Wichmann, Martin Müller. (2024) Ver-
sioninferrer Github. https://github.com/wichmannpas/
VersionInferrer.

[32] Zgrab. (2024) Zgrab 2.0. https://github.com/zmap/
zgrab2.

[33] Nmap. (2024) Nmap scripting engine. https://www.
metasploit.com/.

[34] M. Wu, G. Hong, J. Chen, Q. Liu, S. Tang, Y. Li, B. Liu,
H. Duan, and M. Yang, “Revealing the black box of
device search engine: Scanning assets, strategies, and
ethical consideration,” in Proceedings of the Network
and Distributed System Security (NDSS) Symposium
2025, ser. NDSS ’25, 2025. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2025.241924

[35] NIST. (2022) cvedetails.com. https://www.cvedetails.
com/.

[36] NIST. (2023) Cve-2023-31418. https://nvd.nist.gov/
vuln/detail/cve-2023-31418.

[37] (2024) Security for Elasticsearch. https://www.elastic.
co/blog/security-for-elasticsearch-is-now-free/.

[38] NIST. (2023) Cve-2019-19846. https://nvd.nist.gov/
vuln/detail/cve-2019-19846.

[39] NIST. (2022) Cve-2022-23797. https://nvd.nist.gov/
vuln/detail/cve-2022-23797.

[40] F. C. Freiling and S. Schinzel, “Detecting hidden storage
side channel vulnerabilities in networked applications,”
in IFIP International Information Security Conference.
Springer, 2011, pp. 41–55.

[41] R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and
C. Diaz, “How unique is your .onion? an analysis
of the fingerprintability of tor onion services,” in
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 2021–2036. [Online]. Available:
https://doi.org/10.1145/3133956.3134005

[42] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep
fingerprinting: Undermining website fingerprinting
defenses with deep learning,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery,
2018, p. 1928–1943. [Online]. Available: https:
//doi.org/10.1145/3243734.3243768

[43] Z. Guan, G. Xiong, G. Gou, Z. Li, M. Cui, and
C. Liu, “Bapm: Block attention profiling model for

multi-tab website fingerprinting attacks on tor,” in
Proceedings of the 37th Annual Computer Security
Applications Conference, ser. ACSAC ’21. New York,
NY, USA: Association for Computing Machinery, 2021,
p. 248–259. [Online]. Available: https://doi.org/10.
1145/3485832.3485891

[44] S. Li and Y. Cao, “Who touched my browser
fingerprint? a large-scale measurement study and
classification of fingerprint dynamics,” in Proceedings
of the ACM Internet Measurement Conference, ser. IMC
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 370–385. [Online]. Available:
https://doi.org/10.1145/3419394.3423614

[45] R. Torok and A. Levy, “Only pay for what you leak:
Leveraging sandboxes for a minimally invasive browser
fingerprinting defense,” in 2023 IEEE Symposium on
Security and Privacy (SP), 2023, pp. 1023–1040.

[46] (2024) Elasticsearch release notes. https:
//www.elastic.co/guide/en/elasticsearch/reference/
8.15/es-release-notes.html.

[47] (2024) Redis release notes. https://github.com/redis/
redis/tags.

[48] (2024) Dubbo release notes. https://github.com/apache/
dubbo/releases/tag/dubbo-3.2.15.

[49] (2024) Joomla release notes. https://github.com/joomla/
joomla-cms/releases.

[50] (2025) phpmyadmin news. https://www.phpmyadmin.
net/news/.

[51] (2024) Elasticsearch User’s Guide. https://www.elastic.
co/guide/en/elasticsearch/reference/current/docs.html.

[52] (2024) Redis User’s Guide. https://redis.io/docs/latest/
index.xml.

[53] (2024) Dubbo User’s Guide. https://cn.dubbo.apache.
org/en/overview/what/.

[54] (2024) Joomla User’s Guide. https://docs.joomla.org/
Main_Page.

[55] (2025) phpmyadmin User’s Guide. https://docs.
phpmyadmin.net/en/latest/.

[56] (2024) Beautifulsoup. https://www.crummy.com/
software/BeautifulSoup/.

[57] H. Face. (2024) Qwen2.5-32b-instruct. https:
//huggingface.co/Qwen/Qwen2.5-32B-Instruct.

[58] qwen. (2024) Qwen-agent. https://github.com/
QwenLM/Qwen-Agentl.

https://github.com/wichmannpas/VersionInferrer
https://github.com/wichmannpas/VersionInferrer
https://github.com/zmap/zgrab2
https://github.com/zmap/zgrab2
https://www.metasploit.com/
https://www.metasploit.com/
https://dx.doi.org/10.14722/ndss.2025.241924
https://www.cvedetails.com/
https://www.cvedetails.com/
https://nvd.nist.gov/vuln/detail/cve-2023-31418
https://nvd.nist.gov/vuln/detail/cve-2023-31418
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free/
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free/
https://nvd.nist.gov/vuln/detail/cve-2019-19846
https://nvd.nist.gov/vuln/detail/cve-2019-19846
https://nvd.nist.gov/vuln/detail/cve-2022-23797
https://nvd.nist.gov/vuln/detail/cve-2022-23797
https://doi.org/10.1145/3133956.3134005
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3485832.3485891
https://doi.org/10.1145/3485832.3485891
https://doi.org/10.1145/3419394.3423614
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/es-release-notes.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/es-release-notes.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.15/es-release-notes.html
https://github.com/redis/redis/tags
https://github.com/redis/redis/tags
https://github.com/apache/dubbo/releases/tag/dubbo-3.2.15
https://github.com/apache/dubbo/releases/tag/dubbo-3.2.15
https://github.com/joomla/joomla-cms/releases
https://github.com/joomla/joomla-cms/releases
https://www.phpmyadmin.net/news/
https://www.phpmyadmin.net/news/
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html
https://redis.io/docs/latest/index.xml
https://redis.io/docs/latest/index.xml
https://cn.dubbo.apache.org/en/overview/what/
https://cn.dubbo.apache.org/en/overview/what/
https://docs.joomla.org/Main_Page
https://docs.joomla.org/Main_Page
https://docs.phpmyadmin.net/en/latest/
https://docs.phpmyadmin.net/en/latest/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://github.com/QwenLM/Qwen-Agentl
https://github.com/QwenLM/Qwen-Agentl

A Probe Planning Algorithm

Here we provide our algorithm of minimal probe sequence
selection (Algorithm 2) and Decision tree generation (Algo-
rithm 3).

Algorithm 2: Minimal Probe Sequence Selection
Data: Version set V , available probes P.
Result: Minimal probe sequence Pmin distinguish V .

1 Function minimalProbes(V,P):
2 optResults←{}, Pmin← []
3 foreach v ∈V do
4 Ptemp,VnotDistinguished ← selectGreedy(v,P)
5 optResults[v]←VnotDistinguished
6 Pmin.extend(Ptemp)
7 end
8 Premain← Pmin
9 foreach p ∈ Pmin do

10 Premain.remove(p)
11 isRedundant← True
12 foreach v ∈V do
13 Ptemp,VnotDistinguished ←

selectGreedy(v,Premain)
14 if VnotDistinguished ̸= optResults[v] then
15 isRedundant← False
16 break
17 end
18 end
19 if isRedundant then
20 Pmin← Premain
21 Pmin← minimalProbes(V,Pmin)
22 return Pmin

23 end
24 Premain.append(p)
25 end
26 return Pmin

B Implementation

This section implements our functionality-based version iden-
tification method on five open-source software for local exper-
iments: ElasticSearch, Dubbo, Redis, Joomla and phpMyAd-
min. We use them to evaluate the effectiveness of our method
and provide data support for large-scale identification of real-
world software versions.

We conducted experiments on a server with a 13th Gen In-
tel® Core™ i7-13700 processor (24 cores), 32GB of memory,
and a 1TB SSD, running the Ubuntu 23.04 operating system.
Version Selection. As outlined in Section 4, we selected
ElasticSearch, Dubbo, Redis, Joomla and phpMyAdmin to
demonstrate the capabilities of our version identification tool.

Algorithm 3: Decision Tree Construction
Input: Current probe pcur, version set V , minimal

probe sequence P, path from root node to
current node path

Output: Decision tree node node
1 Function BuildTree(pcur, V , Pused , path):
2 node← CreateNode(pcur,V, path),

Rcur← response set of pcur
3 foreach r j ∈ Rcur do
4 A← f (pcur,r j); Vnew←V ∩A;
5 branch_name← pcur_resp j
6 if Vnew = /0 or Vnew =V then
7 continue
8 end
9 else if |Vnew|= 1 then

10 path.append(branch_name)
11 childNode←

CreateLeafNode(pcur,Vnew, path)
12 node.addChild(childNode)
13 end
14 else
15 Select a probe pk ∈ P that can split Vnew (if

such a probe exists);
16 if no such probe exists then
17 path.append(branch_name)
18 childNode← CreateLeafNode(pcur,

Vnew, path)
19 node.addChild(childNode)
20 end
21 else
22 P.remove(pk)
23 path.append(branch_name)
24 childNode← BuildTree(P, Vnew,

path)
25 node.addChild(childNode)
26 P.append(pk)

27 end
28 end
29 end
30 return node

For each software, we selected stable releases from the past
decade (2014-2024). We filtered out pre-release and develop-
ment versions, as these are typically not used in production
environments. Additionally, while our deployment strategy
aims to cover all versions, we failed to include some versions
due to obsolescence or the lack of maintenance for their depen-
dent libraries. Table 2 shows the softwares and corresponding
versions we covered.
Deployment. We deployed the software using containerized
services based on the official source code. Specifically, we
accomplished this by utilizing the original images provided by

the official sources or by building images based on the official
test examples. If an official Docker image is available, we
change the image versions to get rapid deployment of different
versions. If not, we compiled and ran the code locally based
on the official examples, packaging it into a Docker image
according to the provided instructions. Additionally, we used
a docker-compose.yml file to manage multiple docker images
and generate rapid deployment commands for each version.

We try our best to minimize discrepancies between local ex-
periments and real-world environments. We did not introduce
any user-defined content, such as new data or plugins.

Notably, some software systems provide security mecha-
nisms, such as authentication requirements, restrictions on
external IP access, or blocking external IPs, to enhance safety.
These mechanisms may render some probes accessible in
local environments, intercepted, or ineffective in real-world
scenarios. To cope with this situation, we conducted exper-
iments under different configurations based on the security
mechanisms provided by the software, as summarized in Ta-
ble 9.
Documentation Collection. We implemented a web crawler
in Python to collect functional features and contextual infor-
mation from release notes [46, 47, 48, 49, 50] and Users’
Guides [51, 52, 53, 54, 55], which are typically web docu-
ments. We used BeatuifulSoup4 [56] to parse the release
documents, extracted the description of each functional fea-
ture and its corresponding Pull Request ID, and then called
the GitHub API to retrieve descriptions from the pull request
webpage. Additionally, we excluded any functional features
for which context retrieval failed. The results of the software
documentation collection are summarized in Table 2. We ex-
tracted 7,963 functional changes from the release notes of
684 different versions across the five software.
Probe Generation. We used the open-source Qwen2.5-32B-
Instruct model [57] and the accompanying Qwen-Agent
Python framework [58]. We evaluated different models
in Section 4.2. The Qwen-Agent framework provides a
“code_interpreter” Agent, which allows Qwen to execute code
and retrieve the results. Building on this, we developed the
functional probe generation system and conducted large-scale
probe generation.

However, LLMs do not generate valid probes for every func-
tional feature, so we filter out responses lacking actionable
instructions, such as “There is no specific command provided
in the given context to trigger..”. Additionally, although we
give LLM the example probe format in the prompt, LLM may
still make mistakes. For example, some probes only provide
the request method and path (e.g., GET /_search) but lack
essential parameters such as host and port, while some probes
contain redundant explanations, such as “the specific com-
mand would be”. To address this, we processed raw responses
using a regex-based method, retaining only commands and
configuring appropriate parameters to match the format of the
provided examples.

Response Processing. We implemented an automated Python-
based framework to handle each version of the software’s
workflow sequentially, including deployment, probe execu-
tion, response collection, and uninstallation, while monitor-
ing the status at each stage. After obtaining the responses,
we mask environment variables unrelated to version-specific
functional features, such as resource usage, IP addresses, and
network transmission rates.

For each probe, we grouped versions with identical re-
sponses into the same category to determine the version clas-
sification and retained only the probes that can categorize ver-
sions into at least two distinct classes, dynamically generated
version identification decision trees for version identification.
Version Identification. Based on the effective probes col-
lected from local experiments and a classification function
that maps response types to corresponding versions for each
probe, we implemented a Python-based version identification
scanner capable of identifying versions on real-world servers.

Specifically, VersionSeek takes as input the target server
address and the corresponding software type. It first uses “nc
-z” to check whether the relevant port is open. For servers
with open ports, VersionSeek invokes the appropriate set of
probes and the corresponding classification function based
on the software type. Following the procedure outlined in
Algorithm 1, we implemented a Python class to simulate the
decision tree structure, which is serialized and deserialized
using the JSON format for storage and reuse. The responses
are normalized based on locally collected rules and then pro-
cessed using Python’s re library to match and replace noise.
Based on the decision tree, VersionSeek maps the matched
response to a set of candidate versions.

If a probe fails to match, VersionSeek re-plans the prob-
ing schedule using remaining unused probes and the current
candidate version set. This process continues until a final,
indistinguishable version set is reached. In case of conflict-
ing results, a majority voting algorithm selects the version
supported by the most matching probes.

C Evaluation

C.1 Probe Effectiveness

Table 9 shows the result of testing the generated probes under
different security configurations, retaining only those that
produced distinguishing responses across versions.

C.2 Scanning Efficiency

Table 7 shows the average time for probe generation, schedul-
ing, and execution for different services and the average num-
ber of probes and scanning time per server.

Software
Service

Average Time
for Generate
One Probe

Average Time
for Probe

Scheduling

Average Time
for One Probe

Execution

Average Number
of Probes

Per Server Scan

Average Time
to Scan

One Server

Elasticsearch 55.706s 4.425s 1.021s 5.800 7.400s
Dubbo 56.041s 0.001s 2.876s 4.867 14.611s
Redis 60.710s 2.372s 1.287s 2.633 7.440s

Joomla 69.556s 3.824s 1.458s 6.233 9.130s
phpMyAdmin 68.634s 0.513s 0.574s 9.416 7.969s

Table 7: Average time for probe generation, scheduling, and execution for different services and the average number of probes
and scanning time per server.

Software VersionSeek Nmap Metasploit Blindelephant WhatWeb

obf hid obf hid obf hid obf hid obf hid

Elasticsearch 100% 100% 0% 0% 0% 0% - - - -
Redis 100% 100% 0% 0% 0% 0% - - - -

Joomla 100% 100% - - 0% 0% 29% 29% 0% 0%
phpMyAdmin 100% 100% - - - - 100% 100% 0% 0%

Table 8: Version Identification Performance of Different Tools under Obfuscated(obf) and Hiding(hid) Scenarios.

Software Security
Configurations

of Valid
Probes

Length of Minimal
Probe Sequence

Elasticsearch with auth 544 8
no auth 488 23

Redis
with auth 98 10
no auth 132 12

deny external access 1 1

Dubbo - 282 4

Joomla - 114 5

phpMyAdmin - 176 9

Table 9: The effectiveness of probes under different security
configurations for software.

C.3 Robustness of Version Identification
Table 8 shows the version identification performance of differ-
ent tools under obfuscated (obf) and hiding (hid) scenarios.

	Introduction
	Preliminary Study
	Version Identification
	Functional Changes
	Threat model

	Methodology
	Functional Probe Generation
	Response Processing
	Version Identification

	Evaluation
	Dataset
	RAG Ablation Study
	Probe Effectiveness
	Scanning Efficiency
	Version Identification Performance
	Robustness of Version Identification

	Real-World Measurement
	Dataset
	Results
	Case Study

	Discussion
	Security Implication
	Limitation

	Related Work
	Conclusion
	Probe Planning Algorithm
	Implementation
	Evaluation
	Probe Effectiveness
	Scanning Efficiency
	Robustness of Version Identification

